Failure Mode and Reliability Study for HTGR Electrical System: FMEA

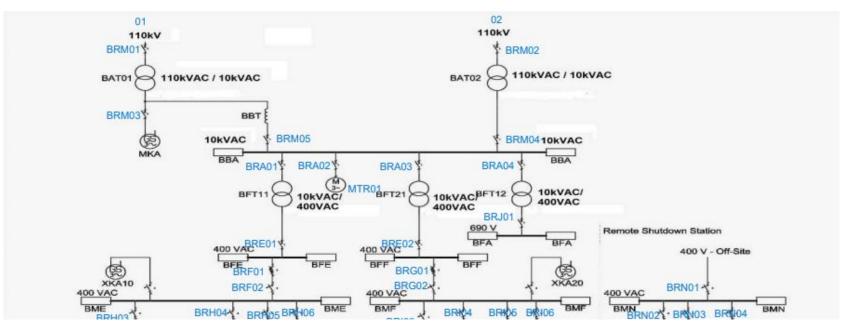
NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Mina Torabi

Division of Nuclear Energy and Environmental Studies

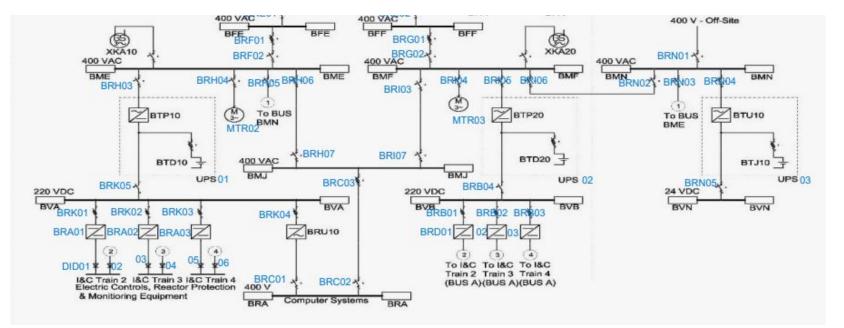
This work is one portion of the studies in the strategic Polish program of scientific research and development work "Social and economic development of Poland in the conditions of globalizing markets GOSPOSTRATEG" part of "Preparation of legal, organizational and technical instruments for the HTR implementation" financed by the National Centre for Research and Development (NCBiR) in Poland.

- Reliability study of GEMINI+ Power Plant project
- Methodology : Karol Kowal, Mina Torabi,. "Failure Mode and Reliability Study for Electrical Facility of the High Temperature Engineering Test Reactor", Reliability Engineering and system safety, DOI: 10.1016/j.ress.2021.107529
- The Economic objective of the plant: A long term profitability needs to be ensured
- One of the severest Anticipated Operational Occurrences: Loss of Offsite (& Onsite) power which effects the profitability


The overall goals of this work:

- Investigation of the system failure modes in terms of frequency and severity by the Failure Mode and Effect Analysis (FMEA) method
- Providing FMEA-based method for gradual screening of the failure modes aiming at selection of the most significant failures of high priority to be modelled with higher accuracy

Gemini+ Electrical System Diagram



Gemini+ Electrical System Diagram (Final GEMINI+ Safety Options Report)

Gemini+ Electrical System Diagram

Gemini+ Electrical System Diagram (Final GEMINI+ Safety Options Report)

Gospostrateg Electrical System Components Data Set

Electrical system components Data Set

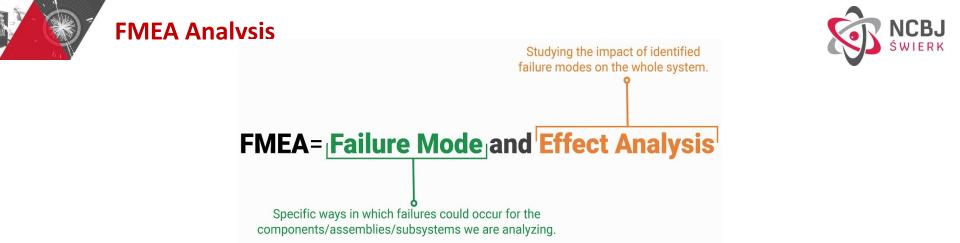
No	Component type	Description	Unit	2,596	2,5096	2.mean	2,9596	Low	High	commend	Min	Max	Data Sources of Failure rates	s Minimum Mean Maximum 5% 5			(a) (b)		Data Sources of Reapir Times		
140	Component type	Description	Unit	1240	7.50%0	Amean	1.9540	Low	rugn	ecommend	AIII	MIN	Data Sources of Pallure rates		Minimum	Mean	Maximum	596	50%	9596	Data Sources of Keapir Times
1	Automatic Bus Transfer Switch	Automatic Power Transfer Switch Fails	/d	4.19E-04	1.05E-03	1.13E-03	2.13E-03	12	120	<u></u>		1944	NUREG/CR-6928	12	823	440		-	123	20	-
1	Automatic Bus transfer Switch	Automatic Power Transfer Switch Transf	/h	3.89E-10	4.50E-08	9.90E-08	3.80E-07		-	-	-	1 1	NUREG/CR-6928		_		-	(_	-	
		Fails to Operate	/h	2.67E-07	2.00E-06	2.59E-06	6.93E-06		-	1.2	-		NUREG/CR-6928	100	-		1	_	120	-	Review of Maintenance and Repair Times for
2	Battery Charger	Fail During Operation	/h	-		5.50E-07	-	_		-	-	-	IAEA-TECDOC-478				-	_		-	Review of Maintenance and Repair Times for
		Fails Shorted	/h	6.70E-09	2.00E-07	3.13E-07	1.00E-06	-		-	-	-	NUREG-75/014 (calc.)(USED IN OUR PAPER)		-	-	_	_	-		Review of Maintenance and Repair Times for
3	Battery Charger 120 V	Fail During Operation	/h	1.70E-06	-	6.70E-06	1.30E-05	-	-	-	-	-	IAEA-TECDOC-478	5.6 hours	-	-	-	_	-	-	IAEA-TECDOC-478
4	Battery Charger SCR. Type	Operational Failure	/h	3.00E-07	-	5.00E-06	1.30E-05	-		_	-	-	IAEA-TECDOC-478	10.1 hours	_	-	_	_	-		IAEA-TECDOC-478
5	Battery Charger General	Hardware Failure	/d	_	-	4.00E-04	_	-	-	-	-	-	IAEA-TECDOC-478	18 hours		_	-		-	_	Review of Maintenance and Repair Times for
6	Battery Charger Rectifier	No Output	/h	_	1.00		-	6.00E-08	1.02E-05	4.90E-07	-	-	IAEA-TECDOC-478	18 hours		-					Review of Maintenance and Repair Times for
7	Battery Charger Solid State General	No Output	/h		-	-	-	1.40E-06	1.80E-05	5.50E-06	-	-	IAEA-TECDOC-478	5-10 hours	_	-	-	_	-	-	IAEA-TECDOC-478
		Fails to Operate	/h	2.55E-07	3.67E-07	3.72E-07	5.06E-07	-		-	-	-	NUREG/CR-6928		-	-	_	_	-		-
		Fails Shorted	/h	6.70E-09	2.00E-07	3.13E-07	1.00E-06	-	-	-	-	-	NUREG-75/014 (calc.)(USED IN OUR PAPER)			_	_				_
		Inadequate Output	/h	-		-	-	4.90E-07	7.50E-06	3.20E-06	-	-	IAEA-TECDOC-478						4-7 hours		IAEA-TECDOC-478
8	Battery	No Output	/h	-	-	-	-	3.00E-08	3.00E-06	6.40E-07	-	-	IAEA-TECDOC-478			_	_		4-7 hours	_	IAEA-TECDOC-478
		Operational Failure	/h	8.00E-10	-	8.20E-08	2.50E-07	-		-	-	-	IAEA-TECDOC-478	11.2 hours							IAEA-TECDOC-478
		Failed Effective Output	/d	-	-	1.30E-02	6.80E-02	-	-	-	-	-	IAEA-TECDOC-478	2 hours	-	-	-	_	-	-	IAEA-TECDOC-478
		Fail During Operation	/h	-	44	7.60E-08	-	-		_	_	_	IAEA-TECDOC-478				_	_	-		-
9	Battery 125 V	Fail During Operation	/h	5.00E-08	-	5.20E-07	1.70E-06	-	-	-	-	-	IAEA-TECDOC-478	5 hours	-	-	-	_	-	-	IAEA-TECDOC-478
10	Battery General	Hardware Failure	/d		-	4.00E-04		-		_	_	_	IAEA-TECDOC-478			-	_	_			-
11	Battery Lead Acid	Catastrophic (No Output Given Challeng	/cy	_	-	-	-	-	7.20E-06	4.60E-06	-	-	IAEA-TECDOC-478	19 hours	-	-	-	_	-	-	IAEA-TECDOC-478
12	Battery Lead Acid	Catastrophic (No Output Given Challeng	/h		1000			0.00E+00	3.00E-08	2.00E-08	_	-	IAEA-TECDOC-478	0.000		-		_		-	-
13	Battery Nickel Cadmium	All Failure Modes	/h	_	_	-	-	1.10E-07	9.90E-06	2.60E-07	-	-	IAEA-TECDOC-478	10.33 hour	_	-	-		-	-	IS ON INDUSTRY APPLICATIONS, VOL. 37, NO. 1, JANUARY
14	Battery (power system) Wet Cell	Failure to Provide Proper Output	/h	1.00E-06	3.00E-06	-	1.00E-05	-	-	<u></u>	-		IAEA-TECDOC-478			-					-
15	Bus	All Failure Modes	/h	-	-	1.00E-08	-	-	-	-	6.00E-10	2.00E-07	IAEA-TECDOC-478	-	-	_	-	2 hours	4 hours	6 hours	Review of Maintenance and Repair Times for
	10 ANN	Fails to Operate	/h	6.10E-08	6.81E-07	9.55E-07	2.75E-06	_		-	-	-	NUREG/CR-6928			-		1120			-
16	Bus AC	Fails Shorted	/h	2.00E-07	7.77E-07	8.96E-07	2.00E-06	-	-	-	-	-	NUREG-75/014 (calc.)(USED IN OUR PAPER)	_	_	_	-	_	_	_	
20	1000	Fails to Operate	/h	8.51E-10	9.85E-08	2.17E-07	8.31E-07	-		_	-	-	NUREG/CR-6928	10.8 hours	_	20	_	_	120		IAEA-TECDOC-478
17	Bus DC	Fails Shorted	/h	2.00E-07	7.77E-07	8.96E-07	2.00E-06	-	-	_	-	-	NUREG-75/014 (calc.)(USED IN OUR PAPER)	_		-	-			-	_
18	Bus AC (120 V, 220 V)	Fail during operation	/h	6.30E-08		3.40E-07	6.80E-07				_		IAEA-TECDOC-478	<u> </u>							

Gospostrateg Electrical System Components Data Set

Electrical system components Data Set

A	B	c	D	E	F	G	н	1	L	К	L	м	N	0	P	Q	R	S	т	U	v
	Transformer General	Open Circut, Primary To Secondary	/h	3.00E-07	1.00E-06		3.00E-06	-	-	-	-	-	IAEA-TECDOC-478	-	_			-		-	-
		Fail During Operation	/h	-		1.70E-06	-	-			_	-	IAEA-TECDOC-478	2	1000	0.00		22	1922	1.22	_
55	Transformer General Voltage <= 6 kv	Interruption	h	-	-	7.90E-07	3.50E-06	-	-	-	-	-	IAEA-TECDOC-478	10 hours				_	_	_	IAEA-TECDOC-478
56	Transformer High Voltage Outdoor	Operational Failure	/h	1.50E-07		1.40E-06	3.50E-06	_	-	-		-	IAEA-TECDOC-478	10.8 hours				2		1.21	IAEA-TECDOC-478
57	Transformer Instrument Transformer C	No Output (Catastrophic)	h	-	-	-	-	1.10E-07	4.90E-07	2.60E-07	-	-	IAEA-TECDOC-478	-				_	_		-
58	Transformer Main Power Generator or	No Output (Catastrophic)	h		7.00	-		3.00E-08	1.80E-06	2.80E-07		-	IAEA-TECDOC-478	20				22		1.2	
59	Transformer Main Power Generator or	No Output (Catastrophic)	/h	-	-	_	-	9.50E-08	3.90E-07	2.20E-07	-	-	IAEA-TECDOC-478				_	_			
60	Transformer Main Power Generator or	No Output (Catastrophic)	/h	-	1000	1.00		2.50E-07	6.20E-07	3.20E-07		-	IAEA-TECDOC-478	2		_				1.2	
61	Transformer Main Power Generator or	No Output (Catastrophic)	h	-		_	_	5.30E-07	1.90E-06	1.20E-06	_	-	IAEA-TECDOC-478	-	_	_	_	-	_	_	
62	Transformer Main Power Generator or	No Output (Catastrophic)	/h					1.00E-07	1.60E-06	5.80E-07		-	IAEA-TECDOC-478	1	_					-	
63	Transformer Main Power Generator or	No Output (Catastrophic)	h	-			_	5.00E-07	1.50E-06	1.10E-06	-	_	IAEA-TECDOC-478		_		_	-		_	
64	Transformer Main Power Generator or	No Output (Catastrophic)	h					1.80E-07	5.10E-07	3.40E-07	-		IAEA-TECDOC-478		_		-			-	
65	Transformer Main Power Generator or	No Output (Catastrophic)	h	-			_	4.30E-07	1.40E-06	7.40E-07	-	-	IAEA-TECDOC-478				-				
66	Transformer Main transformer Voltage		h			3.50E-06	1.80E-05						IAEA-TECDOC-478	38 hours	-						IAEA-TECDOC-478
67	Transformer regulating 120 V AC	Operational Failure	h	4.40E-09		2.00E-06	4.20E-06				-	-	IAEA-TECDOC-478		-			-			
68	Transformer Station Service Including	No Output (Catastrophic)	h	-				1.10E-07	1.40E-06	4.00E-07			IAEA-TECDOC-478	-							
69	Transformer Station Service Including	No Output (Catastrophic)	h	1			_	8.00E-08	2.30E-06	2.70E-07	-	-	IAEA-TECOC-478	-	-	_		-	_		
70	Transformer Station Service Including	No Output (Catastrophic)	h					8.60E-08	1.10E-06	2.20E-07			IAEA-TECOC-478								
-	Transformer Station Service Including		h	1			-	5.40E-08	8.10E-07	1.10E-07		-	IAEA-TECOC-478	-	-	-		-	-		
-	Transformer Station Start And Auxiliar		h			2.00E-06	1.10E-05					-	IAEA-TECOC-478	5 hours						-	IAEA-TECDOC-478
-	Transformer Substation Liquid Filled, S	No Output (Catastrophic)	h	-				9.00E-08	2.60E-06	5.10E-07	-	-	IAEA-TECOC-478	_	-	_	-	-	_		
	Transformer Substation Liquid Filled,		h	-			-	3.10E-07	1.90E-06	8.00E-07			IAEA-TECOC-478					-		-	
		Short to adjacent circut	/h	1.00E-09	1.00E-08	-		_				-	IAEA-TECOC-478								
75	Terminal board general	Open Circut	/h	1	1000	3.00E-07			0.00	100	6.00E-09	2.00E-06	IAEA-TECOC-478	2	1000	1000	100	22	1 222	1.000	
		Open connection	/h	1.00E-08	1.00E-07	-	-	-	1.000	-	-	-	IAEA-TECOC-478	2	1000	1.000	122	2	1 2 2 1	1.000	
76	Wire Control Circut Wire Typical Circu	Short to Ground	h	3.00E-08	3.00E-07	-	3.00E-06		_	-	-	-	IAEA-TECOC-478	-	_		-	_	_		_
77	Wire Control Circut Wire Typical Circu	Short to Power	h	1.00E-09	1.00E-08	-	1.00E-07	-	-	-	_	_	IAEA-TECOC-478		_	_	-	-	-	-	-
78	Wire Control Circut Wire Typical Circu	Open Circut	/h	1.00E-06	3.00E-06	-	3.00E-06	-	-	-	-	-	IAEA-TECOC-478		_				_	_	-
_		Short to Ground	/h	-	-	1.00E-06	-	_	_	-	2.00E-08	5.00E-06	IAEA-TECOC-478		_	-	-		_		_
79	Wire General	Short to Power	/h	-	-	3.00E-08	-	-	-	-	6.00E-10	2.00E-07	IAEA-TECOC-478	_			-	_	-	_	_
		Open Circut	h	-	_	1.00E-05	-	_	_	_	2.00E-07	5.00E-05	IAEA-TECOC-478	1	_		-	-	_		
80	Weather-related	Weather-related Loss of Offsite Power	h	6.64E-07	8.76E-07	8.84E-07	1.13E-06						A. Volkanovski (calc.)	-			-	-	1 1000	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1.1

Gemini+ Electrical System Components Data Set



Gemini+ Electrical system components Data Set

No	Component type	Failure Mode	Unit	λmean	Data Sources of Failure rates
1	Transformer	Fails to Operate	/h	2.89E-06	NUREG/CR-6928
1	Transformer	Fails Shorted	/h	1.34E-06	NUREG-75/014 (calc.)(USED IN OUR PAPER)
2	Turbine Genertaor	Fails to run	/h	1.40E-04	NUREG/CR-6928
		Fails To Start, Normally Stand	/d	2.88E-03	NUREG/CR-6928
3	Emergency Diesel Generator	Fails to Run	/h	4.50E-03	IAEA-TECDOC-478
		Spourious Stop	/h	5.50E-03	IAEA-TECDOC-478
4	High Voltage Circuit Breaker (110kV)	Spurious Operation	/h	4.83E-07	NUREG/CR-6928
4	High voltage Circuit Breaker (110kv)	Fails Shorted	/h	3.14E-08	NUREG-75/014 (calc.)(USED IN OUR PAPER)
5	Medium Voltage Circuit Breaker (10KV)	Spurious Operation	/h	1.15E-07	NUREG/CR-6928
2	Medium vonage Chount Breaker (Tok.v)	Fails Shorted	/h	3.14E-08	NUREG-75/014 (calc.)(USED IN OUR PAPER)
6	Low Voltage Circuit Breaker (400,690, 220V)	Spurious Operation	/h	3.14E-08	NUREG-75/014 (calc.)(USED IN OUR PAPER)
0	Low Voltage Circuit Breaker (400,090, 220V)	Fails Shorted	/h	9.97E-08	NUREG/CR-6928
7	Short-Circuit-Limiter (Inductor)	Fails to Operate	/h	4.50E-10	Reliability Evaluation of Conventional and Interleaved DC-DC Boost Converters
0	DC Bus	Fails to Operate	/h	2.17E-07	NUREG/CR-6928
0	DC Bus	Fails Shorted	/h	8.96E-07	NUREG-75/014 (calc.)(USED IN OUR PAPER)
0	AC Bus	Fails to Operate	/h	9.55E-07	NUREG/CR-6928
9	AC Bus	Fails Shorted	/h	8.96E-07	NUREG-75/014 (calc.)(USED IN OUR PAPER)
10	DC-AC Inverter	Inverter Fails Shorted	/h	3.40E-06	NUREG-75/014; TM 5-698-5 (calc.)
10	DC-AC Inverter	Inverter Fails to Operate	/h	4.97E-06	NUREG/CR-6928
11	Battery	Battery Fails Shorted	/h	3.13E-07	NUREG-75/014; TM 5-698-5 (calc.)
11	Battery	Battery Fails to Operate	/h	3.72E-07	NUREG/CR-6928
12	AC-DC Converter	Battery Charger Fails Shorted	/h	3.13E-07	NUREG/CR-6928
12	AC-DC Converter	Battery Charger Fails to Oper	/h	2.59E-06	NUREG-75/014 (calc.)
13	DC-DC Converter	Fails to Operate	/h	3.15E-05	ering application research on reliability prediction of the combined DC-DC power
14	Isolating Diode	Fails to Operate	/h	3.70E-06	IAEA-TECDOC-478
		Switchyard-related Loss of O	/h	1.84E-06	A. Volkanovski (calc.)
15	Off-site Power	Weather-related Loss of Offs	/h	8.84E-07	A. Volkanovski (calc.)
		Grid-related Loss of Offsite I	/h	2.46E-06	A. Volkanovski (calc.)

22.02.2022

M. Torabi, Failure Mode and Effect Analysis of the GEMINI+ Electrical Facility

- A widely used analytical technique for risk assessment aiming at identification, prioritization, and mitigation of the potential failures of systems and processes
- Its first use was in the 1960s by the aerospace industry has been continually updating
- Risk Priority Number = Severity × Occurrence × Detection
- The Purpose of using FMEA in this work : identification and evaluation of possible ways in which an insufficient power of the Gemini+ Electrical Facility can occur

FMEA Severity ranking:

• The seriousness of single failure consequences

No.	Description	Reactor shutdown	Emergency generator
1	Loss of redundancy of a Normal Power Distribution	Not needed	Not needed
2	Loss of redundant single load on an Accident Bus	Not needed	Not needed
3	Loss of redundancy of an Accident Power Distribution	Not needed	Not needed
4	Loss of redundancy of multiple Accident Power Distributions	Not needed	Not needed
5	Loss of single load on a Normal Bus	Needed	Not needed
6	Insufficient input power on a Normal Bus	Needed	Not needed
7	Insufficient input power on an Accident Bus	Needed	Not needed
8	Insufficient input power on an I&C Trains or Computer systems	Needed	Not needed
9	Loss of offsite and onsite power	Needed	Needed/Can be used
10	Loss of all loads on all Accident Buses	Needed	Cannot be used

FMEA rating scale for severity (S)

1-4 Loss of redundancies which does not lead to the reactor shutdown

5-8 Loss of loads or power distribution which leads to the reactor shutdown; No Diesel Generator is needed

9-10 Loss of total offsite and onsite power and all loads which lead to the necessity of using Diesel Generator

22.02.2022

M. Torabi, Failure Mode and Effect Analysis of the GEMINI+ Electrical Facility

FMEA Occurrence ranking:

- Occurrence is a frequency of the failure mode. It corresponds to the expected number of a certain type of events that could occur for a given cause over the desired lifetime of the system being analysed
- Occurrence is usually estimated by the failure rate parameter

0	Description	Failure rate $-\lambda$ [1/h]
1	Extremely Low	$\lambda \le 1$ E-10
2	Very Low	$1E-10 < \lambda \le 1E-09$
3	Low	$1E-09 < \lambda \le 1E-08$
4	Moderately Low	$1E-08 < \lambda \le 1E-07$
5	Moderate	$1E-07 < \lambda \le 1E-06$
6	Increased	$1E-06 < \lambda \le 1E-05$
7	Moderately High	$1E-05 < \lambda \le 1E-04$
8	High	$1E-04 < \lambda \le 1E-03$
9	Very High	$1E-03 < \lambda \le 1E-02$
10	Extremely High	$1E-02 < \lambda$

FMEA rating scale for Occurrence (O)

22.02.2022

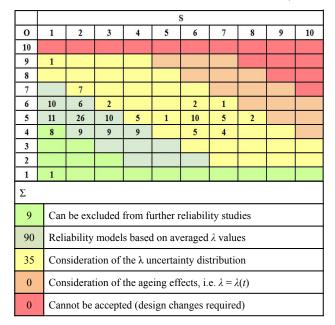
M. Torabi, Failure Mode and Effect Analysis of the GEMINI+ Electrical Facility

FMEA Detection ranking:

- Detection can be defined as the ability to identify the failure mode before it causes significant system performance deterioration.
- If the ability to detect the failure is unknown or the detection cannot be estimated, then according to the FMEA methodology, the detection rank should be set to 10.

- 1.Light Green Area: Failure modes of the lowest severity
- 2. Dark Green Area: Failure modes with relatively low impact on the

reliability of entire system


3.Yellow Area: Failure modes with potentially significant impact on the

system

- 4.Orange Area : Failure modes with significant contribution to the risk measures of the entire system
 - 5. Red Area: Failure modes of the highest severity

Risk matrix of the Gemini+ Electrical Facility (the cells include the number of identified failures)

FMEA for High-Voltage Normal equipment of Gemini+ Electrical Facility

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
1	Turbine Generator	Failure to supply onsite power to MV Bus	Loss of redundant power supply line to Bus BBA	Fails to run	1	9	10	90
				Grid-related	1	6	10	60
2		Failure to supply offsite power to MV Bus	Loss of redundant power supply line to Bus BBA	Weather-related	1	5	10	50
				Grid-related	1	6	10	60
2		Failure to supply neuron to NGV Pure	I are of a due dont notice supply line to Due DDA	Spurious Operation	1	5	10	50
3		Failure to supply power to MV Bus	Loss of redundant power supply line to Bus BBA	Fails Shorted	1	4	10	40

FMEA for Mean-Voltage Normal AC Power Center

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
1	T			Fails to Operate	1	6	10	60
1	Transformer BAT 01/02	Failure to supply redundant Power to the Bus BBA	Loss of redundant power supply line to Bus BBA	Fails Shorted	1	6	10	60
2	Short Circuit Limiter	Failure to limit the short circuit current	Loss of redundant input power line to Bus BBA	Fails to Operate	1	1	10	10
4	AC Bus BBA	Failure to second a star NGV loss de	I and firmer a prove to DEA	Fails to Operate	6	5	10	300
4	AC Bus BBA	Failure to supply power to the MV loads	Loss of input power to Bus BFA	Fails Shorted	6	5	10	300
3	MV Breakers BRM 03/04/05	Failure to second a property of the second to Bring DBA	I are of a due don't accurate surplu line to Due DDA	Spurious Operation	1	5	10	50
3	MV Breakers BRM 03/04/05	Failure to supply power to Bus BBA	Loss of redundant power supply line to Bus BBA	Fails Shorted	1	4	10	40
	MV Breaker BRA 01	E. I D. DEE	Loss of redundant power supply line to Bus BFE	Spurious Operation	1	5	10	50
5	WV Breaker BRA 01	Failure to supply power to Bus BFE	Loss of input power to Bus BFA	Fails Shorted	6	4	10	240
	MV Breaker BRA 02	E-1- Arrest to the Matter MTD 01	Loss of single MV load: Motor MTR01	Spurious Operation	5	5	10	250
6	MV Breaker BRA 02	Failure to supply power to the Motor MTR01	Loss of input power to Bus BFA	Fails Shorted	6	4	10	240
7	MV Breaker BRA 03	E. I. DEE	Loss of redundant power supply line to Bus BFF	Spurious Operation	1	5	10	50
/	MV Breaker BRA 03	Failure to supply power to Bus BFF	Loss of input power to Bus BFA	Fails Shorted	6	4	10	240
0				Spurious Operation	6	5	10	300
8	MV Breaker BRA 04	Failure to supply power to Bus BFA	Loss of input power to Bus BFA	Fails Shorted	6	4	10	240

FMEA for Low-Voltage Normal AC Power Centers (400V)

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
1	Transformer BFT 11/21	Failure to supply power to Bus BFE/BFF	Loss of redundant power supply line to Bus BFE/BFF	Fails to Operate	1	6	10	60
1	Transformer BF1 11/21	ranure to supply power to Bus BrE/Brr	Loss of redundant power supply line to Bus BFE/BFF	Fails Shorted	1	6	10	60
2	AC Bus BFE/BFF	E. il		Fails to Operate	6	5	10	300
2	AC DUS DFE/DFF	Failure to supply power to Bus BME/BMF	Insufficient power on Bus BFE/BFF	Fails Shorted	6	5	10	300
3	ACD DEA	E il to boot D. DEA		Fails to Operate	6	5	10	300
3	AC Bus BFA	Failure to supply power to Bus BFA	Insufficient power on Bus BFA	Fails Shorted	6	5	10	300
	LV Breaker BRE 01/02			Spurious Operation	1	5	10	50
4	LV Breaker BRE 01/02	Failure to supply power to Bus BFE/BFF	Loss of redundant power supply line to Bus BFE/BFF	Fails Shorted	1	4	10	40
-	LUD 1 DDE 01/02			Spurious Operation	2	5	10	100
2	LV Breaker BRF 01/02	Failure to supply power to Bus BME	Loss of redundant power supply line to Bus BME	Fails Shorted	2	4	10	80
c	LUD har DDC 01/02	E-iles to see he see to LV Dee DME		Spurious Operation	2	5	10	100
6	LV Breaker BRG 01/02	Failure to supply power to LV Bus BMF	Loss of redundant power supply line to Bus BMF	Fails Shorted	2	4	10	80

FMEA for Low-Voltage Normal AC Power Centers (690V)

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
	Transformer BFT12	E line to marke to the LV Dec DEA	Level in the second to the Dev DEA	Fails to Operate	6	6	10	360
1	Transformer BF112	Failure to supply power to the LV Bus BFA	Insufficient input power to the Bus BFA	Fails Shorted	6	6	10	360
2	LV Breaker BRJ 01	E-iles to see to IV Dec DEA	I and firmt amounts the Day DEA	Spurious Operation	6	5	10	300
4	LV Breaker BRJ 01	Failure to supply power to LV Bus BFA	Loss of input power to the Bus BFA	Fails Shorted	6	4	10	240

FMEA for Low-Voltage Accident AC Power Centers (400V)

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
1	LV Breaker BRN 01	Evilant to much offits accurate Day DADI	I are after hand best insut assure line to Pur PNOI	Spurious Operation	1	5	10	50
1	LV Breaker BRIN 01	Failure to supply offsite power to Bus BMN	Loss of redundant input power line to Bus BMN	Fails Shorted	1	4	10	40
2	AC D. D. D. C.	E ilente en la desta en te toot AChe la		Fails to Operate	4	5	10	200
2	AC Bus BME	Failure to supply redundant power to 400V AC loads	Loss of input power to Bus BME and BVA	Fails Shorted	4	5	10	200
3	AC D. D. D. C.			Fails to Operate	4	5	10	200
3	AC Bus BMF	Failure to supply redundant power to 400V AC loads	Loss of input power to Bus BMF and BVB	Fails Shorted	4	5	10	200
			I C . D DIDI	Fails to Operate	7	5	10	350
4	AC Bus BMN	Failure to supply redundant power to 400V AC loads	Loss of input power to Bus BVN	Fails Shorted	7	5	10	350
			Loss of redundancy of input power in I&C Trains and Computer	Spurious Operation	3	5	10	150
5	LV Breaker BRH 03	Failure to supply power to UPS01	Loss of redundant Bus BME and BVA	Fails Shorted	4	4	10	160
	TUD I DDUAL		Loss of redundant single load: Motor MTR	Spurious Operation	2	5	10	100
6	LV Breaker BRH 04	Failure to supply power to Motor MTR 02	Loss of redundant Bus BME and BVA	Fails Shorted	4	4	10	160
-	LUD I DDU 05		Loss of redundant power supply line to Bus BMN	Spurious Operation	2	5	10	100
1	LV Breaker BRH 05	Failure to supply redundant power to Bus BMN	Loss of redundant Bus BME and BVA	Fails Shorted	4	4	10	160
0			Loss of redundant power supply line to Bus BMJ	Spurious Operation	2	5	10	100
8	LV Breaker BRH 06	Failure to supply power to Bus BMJ	Loss of redundant Bus BME and BVA	Fails Shorted	4	4	10	160
0				Spurious Operation	2	5	10	100
9	LV Breaker BRH 07, BRI 07	Failure to supply power to Bus BMJ	Loss of redundant power supply line to Bus BMJ	Fails Shorted	2	4	10	80
10			Loss of redundant power supply line to Bus BMJ	Spurious Operation	2	5	10	100
10	LV Breaker BRI 03	Failure to supply power to Bus BMJ	Loss of redundant Bus BMF & BVB	Fails Shorted	4	4	10	160

11	LV Breaker BRI 04	Foilure to much assure to Mater MTD 02	Loss of redundant single load: Motor MTR 03	Spurious Operation	2	5	10	100
11	LV Breaker BRI 04	Failure to supply power to Motor MTR 03	Loss of redundant Bus BMF & BVB	Fails Shorted	4	4	10	160
12	LV Breaker BRI 05	Failure to supply power to UPS02	Loss of redundancy of input power in I&C Trains	Spurious Operation	3	5	10	150
12	LV Breaker BRI 05	randre to supply power to OPS02	Loss of redundant Bus BMF and BVB	Fails Shorted	4	4	10	160
12	LV Breaker BRI 06	Failure to supply power to Bus BMN	Loss of redundant power supply line to Bus BMN	Spurious Operation	2	5	10	100
15	LV Breaker BRI 00	randre to supply power to Bus Binin	Loss of redundant Bus BMF and BVB	Fails Shorted	4	4	10	160
14	LV Breaker BRN 02	Failure to supply power to Bus BMN	Loss of redundant power supply line to Bus BMN	Spurious Operation	2	5	10	100
14	LV Breaker BRIN 02	randre to supply power to Bus Binin	Loss of input power to Bus BVN	Fails Shorted	7	4	10	280
15	LV Breaker BRN 03	Failure to supply redundant power to Bus BMN	Loss of redundant power supply line to Bus BMN	Spurious Operation	2	5	10	100
15	LV Breaker BRIN 05	randre to supply reduidant power to Bus Bivin	Loss of input power to Bus BVN	Fails Shorted	7	4	10	280
16	LV Breaker BRN 04	Failure to supply power to UPS 03	Loss of input power to Bus BVN	Spurious Operation	7	5	10	350
10	LV Breaker BRIN 04	ranue to supply power to OPS 05	Loss of input power to Bus BVN	Fails Shorted	7	4	10	280

FMEA for Uninterrubtiple DC Power Centers (220V)

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
1	LV Breaker BRK 04/05	Failure to supply power to 220V DC Bus BVB/BVA	Loss of redundant Bus BVB/BVA	Spurious Operation	3	5	10	150
1	LV Breaker BKK 04/03	ranure to supply power to 220 v DC Bus B v B/B vA	Loss of redundant bus b v b/b vA	Fails Shorted	3	4	10	120
2	AC-DC Converter BTP 10/20	Failure to supply DC Power to Bus BVA/BVB	Loss of redundant power lines to to Bus BVA/BVB	Fails Shorted	3	5	10	150
4	AC-DC Converter BTP 10/20	randre to supply DC Fower to Bus BVA/BVB	Loss of redundant power lines to to Bus B VA B VB	Fails to Operate	3	6	10	180
3	DC Bus BVA	Failure to supply redundant power to DC/DC and DC/AC Inverters	Loss of all redundant loads on Bus BVA	Fails to Operate	3	5	10	150
3	DC Bus BVA	ranure to supply reduidant power to DC/DC and DC/AC inverters	Loss of all reduidant loads on Bus BVA	Fails Shorted	3	5	10	150
4	DC Bus BVB	Failure to supply action to DC/DC Investors	Loss of all redundant loads on Bus BVB	Fails to Operate	3	5	10	150
4	DC Bus BVB	Failure to supply power to DC/DC Inverters	Loss of all reduidant loads on Bus BVB	Fails Shorted	3	5	10	150
5	LV Breaker BRK 01/02/03	Failure to supply nerves to Converter PR A01/02/02	Loss of redundant power supply line to I&C Train 2/3/4	Spurious Operation	2	5	10	100
5	LV Breaker BRK 01/02/03	Failure to supply power to Converter BRA01/02/03	Loss of all redundant loads on Bus BVA.	Fails Shorted	3	4	10	120
6	LV Breaker BRK 04	Failure to supply nerves to Converter PDU10	Loss of redundant power supply line to Computer Systems	Spurious Operation	2	5	10	100
0	LV Breaker BRK 04	Failure to supply power to Converter BRU10	Loss of all redundant loads on Bus BVA	Fails Shorted	3	4	10	120
1	LV Breaker BRB 01/02/03	Failure to superly converte Converter BBB 01/02/02	Loss of redundant power supply line to I&C Train 2/3/4	Spurious Operation	2	5	10	100
/	LV Breaker BRB 01/02/03	Failure to supply power to Converter BRB 01/02/03	Loss of all redundant loads on Bus BVB	Fails Shorted	3	4	10	120
8	DC-DC Converter BRA 01/02/03	Failure to supply DC Power to I&C Train 2/3/4	Loss of redundant power supply line to I&C Train 2/3/4	Fails to Operate	2	7	10	140
9	DC-DC Converter BRD 01/02/03	Failure to supply DC Power to I&C Train 2/3/4	Loss of redundant power supply line to I&C Train 2/3/4	Fails to Operate	2	7	10	140
10	DC-AC Inverter BRU10	Failure to supply AC Power to Computer Systems	Loss of redundant power supply line to Computer Systems	Fails to Operate	2	7	10	140
11	Isolating Diode DID 01/02	Failure to suppress the backward direction of the current on Train 2	Loss of redundant power line to the I&C Train 2	Fails to Operate	2	6	10	120
12	Isolating Diode DID 03/04	Failure to suppress the backward direction of the current on Train 3	Loss of redundant power line to Train 3	Fails to Operate	2	6	10	120
13	Isolating Diode DID 05/06	Failure to suppress the backward direction of the current on Train 4	Loss of redundant power line to Train 4	Fails to Operate	2	6	10	120

14	LV Breakers BRK 04	Failure to supply power to Inverter BRU10	Loss of redundant power supply line for Inverter BRU 10	Spurious Operation	4	5	10	200
				Fails Shorted	4	4	10	160
15	LV Breaker BRC 01	Failure to supply power to Computer Systems	Loss of redundant power supply line to Computer Systems	Spurious Operation	2	5	10	100
				Fails Shorted	2	4	10	80
16	Computer AC Bus	Failure to supply power to Computer systems	Insufficient power on Computer Systems	Fails to Operate	8	5	10	400
				Fails Shorted	8	5	10	400
17	AC Bus BMJ	Failure to supply redundant power line to Computer AC Bus	Loss of redundant power supply line to Computer Systems	Fails to Operate	2	5	10	100
				Fails Shorted	2	5	10	100
18	LV Breaker BRC 02/03	Failure to supply redundant power line to Computer Systems	Loss of redundant power supply line to Computer Systems	Spurious Operation	2	5	10	100
				Fails Shorted	2	4	10	80

FMEA for Uninterrubtible DC Power Center (24V)

No.	Component	Function lost	The most sever effect	Causes	S	0	D	RPN
1	AC-DC Converter BTU 10	Failure to supply DC Power to Bus BVN	Insufficient input power to Bus BVN	Battery Charger	7	5	10	350
				Battery Charger	7	6	10	420
2	LV Breaker BRN 05 Failure to supply power	Failure to much a series to 24WDC Bus BINI	Loss of input power to the Bus BVN	Spurious Operation	7	5	10	350
		Failure to supply power to 24V DC Bus BVN		Fails Shorted	7	4	10	280

✓ FMEA analysis was performed to identify potential failure modes of Gemini+ electrical system

✓ The identified failures were categorized based on their initial frequency and severity. Based on this ranking a risk matrix was developed aiming at the failures categorization and gradual screening

The results might be implemented for the future more advanced reliability study of the system

Thank you for your attention

Mina Torabi

Division of Nuclear Energy and Environmental Studies

Mina.Torabi@ncbj.gov.pl

This work is one portion of the studies in the strategic Polish program of scientific research and development work "Social and economic development of Poland in the conditions of globalizing markets GOSPOSTRATEG" part of "Preparation of legal, organizational and technical instruments for the HTR implementation" financed by the National Centre for Research and Development (NCBiR) in Poland.